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Abstract

Background: The advent of affordable sequencing has enabled researchers to discover many variants contributing
to disease, including rare variants. There are methods for determining the most informative individuals for
sequencing, but the application of these methods is more complex when working with families. Sets of large
families can be beneficial in finding rare variants, but it may be unfeasible to sequence all members of these
family sets.

Methods: Using simulated data from the Genetic Analysis Workshop 19, we apply multiple regression to identify
cases and controls. To find the best controls for each case, we used kinship coefficients to match within families.
Selected cases and controls were analyzed for rare variants, collapsed by gene, associated with hypertension using
the family-based rare variant association test (FARVAT).

Results: The gene with the strongest simulated effect, MAP4, did not meet the Bonferroni corrected significance
threshold. However, analysis of cases and controls using our selection method substantially improved the
significance of MAP4, despite the reduction in sample size.

Conclusions: Taking the additional steps to select the optimal cases and controls from large family data sets can
help ensure that only informative individuals are included in analysis and may improve the ability to detect rare
variants.
Background
Whole-genome sequencing (WGS) is an important tool
in the discovery of rare variants that influence disease.
Family-based association studies have likewise been
crucial in the fine-mapping of genetic variants contribut-
ing to complex disease. Decreased sequencing costs have
made it increasingly feasible to sequence large families
or even large sets of families, but WGS remains too ex-
pensive for most studies. To address this, a subset of
family members may be selected for WGS, but it can be
difficult to determine which configuration of family
members will have the greatest power to detect rare
variants. Extreme phenotyping is an approach that com-
pares individuals at opposite ends of the phenotypic
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spectrum with the thought that rare causal variants will
be enriched for in the extremes of complex traits [1–3].
The appeal of this approach is its cost-effectiveness;
however, the decrease in cost relies on the ability to
cheaply phenotype many more patients than will be
sequenced [3]. A drawback is the decreased sample size,
which can result in loss of power. We modified the
process of extreme phenotyping and combined it with
family-based selection to make the best use of the data.
We defined our cases and controls as individuals with
extremes of unexplained variation in systolic blood pres-
sure (SBP) after adjusting for covariates in a regression
analysis; these individuals are most likely to have a
genetic component explaining their SBP [1, 4]. As a
second step, we used kinship coefficients to eliminate
those individuals who are least likely to contribute useful
genetic information to the analysis because they are
either too closely related (eg, parent–child) or unrelated.
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Methods
Study population
We analyzed replicate 1 of the simulated data set from
the Genetic Analysis Workshop 19 (GAW19) T2D-
GENES Project 2, a family data set with WGS data [5],
with knowledge of the simulation model. The provided
data set consisted of family-based WGS data and simu-
lated phenotypes for diastolic blood pressure (DBP) and
SBP. Covariates included sex, age, hypertensive status,
antihypertensive medication use, and smoking status.
Prior to modeling, families without sequencing data
available for any family member were omitted. The
remaining sample consisted of 261 individuals with
hypertension and 458 individuals without (base cases
and controls; Table 1).

Extremes of unexplained variation
To define cases and controls, we modified an approach
that selects participants with variation in their pheno-
type that is unexplained by known nongenetic risk
factors, and thus are most likely to have a genetic com-
ponent [1, 4]. Using SBP as the outcome, we used mul-
tiple regression to adjust for the following nongenetic
variables that affect SBP: age, sex, smoking status, and
antihypertensive medication use. The original data were
longitudinal; for subjects with hypertension, the first
year with this diagnosis was used in the model. If the
year used had missing data and the next year had more
complete data, that next year was used. For those with-
out hypertension, the year with the most complete data
was used. Subjects with hypertension who were above
the regression line were those with unexplained high
SBP and were selected as potential cases (n = 170; see
Table 1). These cases are identified in red in Fig. 1.
Subjects without hypertension who were below the re-
gression line were those with unexplained low SBP and
Table 1 Descriptive characteristics of base population, potential cas

Base cases
(n = 261)

Base controls
(n = 458)

Potential cases
(n = 170)

Poten
(n = 2

Genes excluded 42 39

Gene sets 1389 1377

Age (years) 52.4 (17.3) 33.0 (13.6) 49.5 (17.0) 35.2 (1

16.1–99.0 11.1–83.0 16.1–90.3 12.1–8

SBP (mm Hg) 143 (9.5) 116 (13.0) 146 (8.7) 109 (1

102–186 72–140 123–186 72–13

DBP (mm Hg) 78 (9.9) 70 (8.7) 80 (9.3) 68 (8.5

49–102 46–89 54–102 46–87

Males 117 (45) 194 (42) 70 (41) 112 (4

Smokers 54 (21) 97 (21) 35 (21) 59 (21

DBP diastolic blood pressure, NA not applicable, NS not significant, SBP systolic bloo
Data are presented as mean (standard deviation) and range, n (%), or p values
Mean values were compared using a t-test; proportions were compared with a chi-
were selected as potential controls (n = 277; see Table 1).
These potential controls are identified in blue in Fig. 1.

Prioritization of subjects
The process for control selection is outlined in Fig. 2.
Modeling resulted in several controls being available for
each case; however, the familial relationship between
these potential controls and cases had not yet been taken
into consideration. Family structure was determined by
kinship coefficients calculated with the family-based
rare variant association test (FARVAT) using pedigree
data [6]. Controls who were unrelated to any case
were excluded, as they were genetically uninformative.
In addition, parent–child pairs may be less powerful
in association analyses as a result of overmatching
[7], so controls who were parents of cases were ex-
cluded. Only nonparent controls who were related to
cases (ie, with a nonzero kinship coefficient) were in-
cluded in the analysis, and any cases without a re-
lated control were excluded. This resulted in some
cases with multiple controls, and in other cases with
only a single control.

Quality control of sequencing data
In addition to the quality control (QC) performed by the
organizers of Genetic Analysis Workshop prior to
release [5], further QC steps were taken using VCFtools
version 0.1.12a [8] for chromosome 3, which initially
included 1,757,452 sites among 464 sequenced individ-
uals. No individuals were missing more than 10 % of
calls, and thus, none were removed. Sites with a call rate
of less than 95 % were removed (210,954 sites), as were
sites that were out of Hardy-Weinberg equilibrium
within the founders (6903 sites removed using n = 91 foun-
ders) at a p value cutoff of less than 2.9 × 10−8 (Bonferroni
corrected: 0.05/1,546,498 = 3.2 × 10−8) leaving a total of
es and controls, and selected cases and controls

tial controls
77)

Selected cases
(n = 128)

Selected controls
(n = 188)

Selected cases vs.
controls

38 NA

1345 NA

4.8) 49.1 (17.4) 35.8 (14.9) <0.0001

3.0 16.1–85.0 16.0–83.0

1.7) 146 (8.7) 110 (11.4) <0.0001

9 123–186 72–139

) 80 (9.3) 69 (8.1) <0.0001

54–102 48–87

0) 56 (44) 75 (40) NS

) 30 (23) 46 (25) NS

d pressure

squared test



Fig. 1 Modeling for selection of cases and controls. The base population used in modeling (n = 719) were plotted with their observed systolic
blood pressure (SBP) and their expected SBP as predicted by multiple regression. Subjects in red are hypertensive above the mean and were
designated as cases (n = 170). Subjects in blue are nonhypertensive below the mean and were designated as controls (n = 277)
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1,539,595 sites. Sites that did not pass QC were then re-
moved from the data set of imputed genotypes that in-
cluded 959 subjects (both sequenced individuals and those
with imputed genotypes using the 464 sequenced subjects
as input for the imputation). This data set contained
1,215,399 imputed sites, of which 87,555 sites were
removed as a result of the aforementioned QC process,
leaving 1,127,844 sites for analysis.
Annotations
Gene-based annotation was performed with the sites
remaining after QC using ANNOVAR (Annotate Vari-
ation) [9] and the human genome RefSeq database based
on hg19. Sites in intragenic regions or outside of a gene
were mapped to the closest gene. Those that were further
than 5 kbp from a gene were excluded, as the simulation
Fig. 2 Selection of cases and controls. Multistep process using modeling to
cases and controls
model selected causal variants that were within this range,
which left 566,962 sites (560,882 out of range).

Genetic analysis
Sequencing data from chromosome 3 for each set of cases
and controls (base, potential, and selected) were analyzed
using FARVAT [10]. FARVAT allows for the use of a
dichotomous outcome and takes little computational time.
FARVAT provides burden-, variance component–, and
SKAT-O–type tests, and additionally provides the Pedigree
Combined Multivariate and Collapsing (PedCMC) [11]
and collapsing-based tests [12]. We utilized the variance
component-type test as this test performs well for genes
with functional rare variants having effects in the opposite
direction, as is likely to be the case for most genes [6].
Users have the option to specify an offset to improve statis-
tical efficiency. We chose the disease prevalence-based
choose potential cases and controls, and kinship coefficients to select



Table 2 Analysis of genes associated with hypertension in simulated data

Base cases & controls (n = 719) Potential cases & controls (n = 447) Selected cases & controls (n = 316)

Rank Gene p Value Rank Gene p Value Rank Gene p Value

1 PAQR9-AS1 0.0011739 1 MIR4790 0.0000621 1 CHMP2B 0.0017687

2 CISH 0.0031990 2 PAQR9-AS1 0.0041593 2 CSPG5 0.0033962

3 MIR4790 0.0032477 3 RUVBL1-AS1 0.0043295 3 SEMA3B 0.0043256

4 TMIE 0.0038134 4 SPSB4 0.0077963 4 FGD5-AS1 0.0051885

5 ERICH6-AS1 0.0071538 5 SEMA3B 0.0093311 5 DHX30 0.0058120

6 LOC102724699 0.0071575 6 MBNL1 0.0118256 6 SEC22C 0.0060621

7 DPPA2P3 0.0089600 7 ERICH6-AS1 0.0121301 7 ATRIP 0.0061709

8 IMPDH2 0.0121196 8 CIDEC 0.0123527 8 MAP4 0.0067952

9 MAP6D1 0.0131694 9 PLXNB1 0.0128340 9 DLG1-AS1 0.0077826

10 IGSF10 0.0138335 10 FGD5-AS1 0.0152014 10 CHMP2B 0.0086741

388 MAP4 0.3111750 262 MAP4 0.2198460

Analysis of genes on chromosome 3 among different sets of cases and controls. MAP4 is shown in bold, as it has the strongest simulated effect on systolic
blood pressure
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offset, using the hypertension prevalence of 0.26 among
Hispanic adults as reported by the National Health and
Nutritional Examination Surveys (NHANES) [13]. In
addition, age and sex were included as covariates.

Results
Table 1 provides descriptive results of potential and
selected cases and controls. Gene sets on chromosome 3
were analyzed by FARVAT; some gene sets were
excluded, as FARVAT will not analyze gene sets with
only 1 single nucleotide polymorphism (SNP). FARVAT
recalculates minor allele frequency among each set of
individuals being analyzed, resulting in a different
number of gene sets for each set of cases and controls,
as shown in Table 1. After Bonferroni correction for
multiple testing (p = 0.05/1389 = 0.000036), none of the
genes reached significance for any of the 3 sets of cases
and controls. Because MAP4 was simulated to be signifi-
cantly associated with SBP, Table 2 includes the results for
Fig. 3 Quantile-quantile (Q-Q) plots of analyses. Q-Q plots of each analysis,
cases and controls
MAP4, along with the 10 most significant genes for each
analysis, which tended to vary. Of the genes on chromo-
some 3, only MAP4, FLNB, and ABTB1 were simulated to
have an effect on SBP, explaining 7.79 %, 0.29 %, and
0.13 % of the total variance in SBP. Although MAP4 did
not meet the Bonferroni-corrected significance threshold,
analysis of potential cases and controls showed improved
significance for MAP4 over the analysis of all individuals
in the base population, and analysis of selected cases and
selected controls further improved the significance of
MAP4. Figure 3 displays quantile-quantile plots of each
analysis; these plots show no inflation of the observed p
values, indicating that type I error was controlled.

Discussion
The potential power of family data is appealing for the
discovery of rare variants that contribute to complex
disease. Family data sets can contain hundreds or thou-
sands of individuals, and WGS may not be feasible for
including base population, potential cases and controls, and selected
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every individual in every family. Frequently, researchers will
select some family members for sequencing and then
impute sequencing data for the remaining family members
using existing genome-wide SNP data, however, this can
still be costly and the accuracy of imputation varies depend-
ing on the approach used [14, 15]. As an alternative, it is
possible to limit analyses to fewer family members yet by-
pass imputation. Careful selection of cases and controls is
key to narrow the potential candidates for sequencing. Our
multistep approach can be applied to any outcome and
allows elimination of those individuals who are least likely
to have a genetic component to their outcome, with further
elimination of those individuals who will be genetically un-
informative to a rare variant association analysis. Multiple
factors contribute to complex disease, and it may be im-
portant to consider all of these factors in the effort to find
genetic determinants. By using multiple regression, we were
able to take several covariates into consideration; each of
these covariate phenotypes is easily and inexpensively ob-
tained. The inclusion of these covariates allowed us to focus
our attention on those individuals with unexplained and,
likely, genetic hypertension. Through this approach, cases
and controls were not simply defined as those with the
highest and lowest blood pressures, respectively, but rather
those with blood pressure that is higher or lower than
expected given their age, sex, smoking habits, and blood
pressure medication usage. The use of theoretical kinship
coefficients ensured only genetically informative individuals
were included in the analysis. As with any selection process,
the sample size decreased as the requirements for inclusion
became more stringent. While this decrease reduces costs,
loss of power from decreased sample size is a serious con-
cern. In addition, the combination of multiple phenotypic
components into a case definition forces the use of a
dichotomous outcome during analysis, which generally
results in a loss of power. However, we found that the sig-
nal for MAP4, the gene with the strongest simulated effect
on SBP, improved with each step of the selection process,
indicating that our selection process overcame the loss of
power because of a decrease in sample size and dichotomi-
zation of a quantitative trait.

Conclusions
Family data can be useful for the detection of rare vari-
ants, but must be carefully analyzed. There are options
to prioritize the selection of cases and controls for
sequencing and analysis. Careful case definitions, com-
bined with information on family structure, can help
ensure that only the most informative individuals are
chosen for sequencing. This can help keep costs low
and, potentially, improve the ability to detect rare vari-
ants. However, loss of power is a real concern, meaning
the selection process may only yield meaningful results
if there is a large base population from which to select.
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